Solar like activity of the TrES-2 host star?

Stefanie Rätz Research Fellow, ESA, ESTEC, Noordwijk, The Netherlands

Venustransit 6. Juni 2012, Steinkreuz, Jena

C: Christian Kranhold

- University-Observatory Jena
 - 27 Nights
 - March 2007 to June 2012
 - 36 light curves
- TTV@YETI
 - Additional 8 Transits
 - Partially parallel
- 31 different Transits

• TrES-2 in the field of view of the Kepler space telescope

unique: ground-based and space-based observations can be combined (Test of our error-bars)

Data of the Kepler space telescope

- NASA space telescope
 - launch 2009 March 6
 - Aim: detect earth-like planets in the habitable zone around sun-like Stars with the transit method
- *Kepler* is a 0,95 m Schmidt-Telescope
- 42 CCDs field of view: 105 deg²

Deneb :

CYGNI

lbireo

AQUIL

http://kepler.nasa.gov

- TrES-2 around the star GSC03549-02811 (Cygnus): discovered by the *Transatlantic Expolanet Survey* (TrES) (O'Donovan u. a. 2006)
- Period P ~2,47 d \rightarrow TrES-2 is a hot Jupiter

<u>TrES-2</u>

- TrES-2 around the star GSC03549-02811 (Cygnus): discovered by the *Transatlantic Expolanet Survey* (TrES) (O'Donovan u. a. 2006)
- Period P ~2,47 d → TrES-2 is a hot Jupiter
- Winn et al. (2008) measured the Rossiter-McLaughlin effect → good alignment of the stellar spin and the planetary orbit → prograde orbit

- TrES-2 around the star GSC03549-02811 (Cygnus): discovered by the *Transatlantic Expolanet Survey* (TrES) (O'Donovan u. a. 2006)
- Period P ~2,47 d \rightarrow TrES-2 is a hot Jupiter
- Winn et al. (2008) measured the Rossiter-McLaughlin effect → good alignment of the stellar spin and the planetary orbit → prograde orbit
- TrES-2 in Kepler FoV → one of the photometrically best studied TEP

- TrES-2 around the star GSC03549-02811 (Cygnus): discovered by the *Transatlantic Expolanet Survey* (TrES) (O'Donovan u. a. 2006)
- Period P ~2,47 d \rightarrow TrES-2 is a hot Jupiter
- Winn et al. (2008) measured the Rossiter-McLaughlin effect → good alignment of the stellar spin and the planetary orbit → prograde orbit
- TrES-2 in Kepler FoV → one of the photometrically best studied TEP
- There have been controversial discussions about TrES-2: changing inclination? Mislis & Schmitt (2009), Rabus et al. (2009), Mislis et al. (2010), Scuderi et al. (2010), Raetz et al. (2011), Christiansen et al. (2011), Gilliland et al. (2010), Kipping & Bakos (2011), Schröter et al. (2012)

- TrES-2 around the star GSC03549-02811 (Cygnus): discovered by the *Transatlantic Expolanet Survey* (TrES) (O'Donovan u. a. 2006)
- Period P ~2,47 d \rightarrow TrES-2 is a hot Jupiter
- Winn et al. (2008) measured the Rossiter-McLaughlin effect → good alignment of the stellar spin and the planetary orbit → prograde orbit
- TrES-2 in Kepler FoV → one of the photometrically best studied TEP
- There have been controversial discussions about TrES-2: changing inclination? Mislis & Schmitt (2009), Rabus et al. (2009), Mislis et al. (2010), Scuderi et al. (2010), Raetz et al. (2011), Christiansen et al. (2011), Gilliland et al. (2010), Kipping & Bakos (2011), Schröter et al. (2012)
- Daemgen et al. (2009) detected a direct imaged companion candidate to the TrES-2 host star

- TrES-2 around the star GSC03549-02811 (Cygnus): discovered by the *Transatlantic Expolanet Survey* (TrES) (O'Donovan u. a. 2006)
- Period P ~2,47 d \rightarrow TrES-2 is a hot Jupiter
- Winn et al. (2008) measured the Rossiter-McLaughlin effect → good alignment of the stellar spin and the planetary orbit → prograde orbit
- TrES-2 in Kepler FoV → one of the photometrically best studied TEP
- There have been controversial discussions about TrES-2: changing inclination? Mislis & Schmitt (2009), Rabus et al. (2009), Mislis et al. (2010), Scuderi et al. (2010), Raetz et al. (2011), Christiansen et al. (2011), Gilliland et al. (2010), Kipping & Bakos (2011), Schröter et al. (2012)
- Daemgen et al. (2009) detected a direct imaged companion candidate to the TrES-2 host star
- The secondary transit is measured in different wavelength ranges Spitzer (O'Donovan et al. 2010), NIR with ground-based telescopes (Croll et al. 2010), the VIS with Kepler (Kipping & Bakos 2011;Kipping & Spiegel 2011)

- TrES-2 around the star GSC03549-02811 (Cygnus): discovered by the *Transatlantic Expolanet Survey* (TrES) (O'Donovan u. a. 2006)
- Period P ~2,47 d \rightarrow TrES-2 is a hot Jupiter
- Winn et al. (2008) measured the Rossiter-McLaughlin effect → good alignment of the stellar spin and the planetary orbit → prograde orbit
- TrES-2 in Kepler FoV → one of the photometrically best studied TEP
- There have been controversial discussions about TrES-2: changing inclination? Mislis & Schmitt (2009), Rabus et al. (2009), Mislis et al. (2010), Scuderi et al. (2010), Raetz et al. (2011), Christiansen et al. (2011), Gilliland et al. (2010), Kipping & Bakos (2011), Schröter et al. (2012)
- Daemgen et al. (2009) detected a direct imaged companion candidate to the TrES-2 host star
- The secondary transit is measured in different wavelength ranges Spitzer (O'Donovan et al. 2010), NIR with ground-based telescopes (Croll et al. 2010), the VIS with Kepler (Kipping & Bakos 2011;Kipping & Spiegel 2011)
- Barclay et al. (2012) found in the light curve evidence for ellipsoidal variation, Doppler beaming and the reflection effect

Parameter	Value	Ref
Epoch zero transit time T_0 [d]	2453957.63492	[1]
	± 0.00013	[1]
Orbital period P [d]	2.470614 ± 0.000001	[1]
Semi-major axis a [au]	0.03556 ± 0.00075	[2]
Inclination i [°]	83.62 ± 0.14	[2]
Eccentricity e	0	[3]
Mass star $M_{\rm A}$ [M _{\odot}]	0.98 ± 0.06	[4]
Radius star $R_{\rm A}$ [R _{\odot}]	1.00 ± 0.04	[4]
Effective temperature $T_{\rm eff}$ [K]	5795 ± 73	[5]
Surface gravity star $\log g_{\rm A}$	4.457 ± 0.004	[6]
Metallicity $\left\lceil \frac{Fe}{H} \right\rceil$	0.06 ± 0.08	[5]
Mass planet $M_{\rm b}$ [M _{Jup}]	1.26 ± 0.05	[6]
Radius planet $R_{\rm b}$ [R _{Jup}]	1.169 ± 0.034	[7]
Distance d [pc]	220 ± 10	[8]
spectral type	G0V	[4]

Table 1. System parameters of TrES-2 summarized from literature.

References: [1] Raetz et al. (2009), [2] Daemgen et al. (2009), [3]
O'Donovan et al. (2010), [4] O'Donovan et al. (2006), [5]
Ammler-von Eiff et al. (2009), [6] Southworth (2010), [7]
Christiansen et al. (2011), and [8] Sozzetti et al. (2007)

Kepler observations of TrES-2				
Q	Start	End	# Transits	
0	02 May 2009	11 May 2009	4	
1	13 May 2009	15 Jun. 2009	14	
2	20 Jun. 2009	16 Sep. 2009	33	
3	18 Sep. 2009	17 Dec. 2009	33	
4	19 Dec. 2009	09 Jan. 2010	9	
5	20 Mar. 2010	23 Jun. 2010	38	
6	24 Jun. 2010	22 Sep. 2010	37	
$\overline{7}$	23 Sep. 2010	22 Dec. 2010	35	
8	06 Jan. 2011	14 Mar. 2011		
9	21 Mar. 2011	26 Jun. 2011	39	
10	27 Jun. 2011	28 Sep. 2011	38	
11	29 Sep. 2011	04 Jan. 2012	37	
12	05 Jan. 2012	28 Mar. 2012		
13	29 Mar. 2012	27 Jun. 2012	35	
14	28 Jun. 2012	03 Oct. 2012	36	
15	05 Oct. 2012	11 Jan. 2013	36	
16	12 Jan. 2013	08 Apr 2013		
17	09 Apr. 2013	11 May 2013	11	
			435	

Light curve analysis

TrES-2 15.8.2009, STK, V, T_{exp} = 30s 397 Measurements S/N = 5,5 σ = 2,7 mmag

Light curve analysis

- Use of *jktEBop*: (Southworth et al. 2004a,b)
 based on "Eclipsing Binary Orbit Program EBop" (Etzel 1975, 1981; Popper and Etzel 1981)
- Additional parameters: e, M_b/M_{A_s} limb darkining coefficients, etc.
- Estiamtion of error bars:
 - Monte-Carlo Simulation
 - Residual-permutations algorithm

Variation in the system parameters

Raetz et al. 2014, submitted to MNRAS

Variation in the system parameters

$$\Delta i = (0 \pm 1) \cdot 10^{-5}$$
 °/epoch

Raetz et al. 2014, submitted to MNRAS

Variation in the system parameters

Transit Timing

O-C-diagram only for the 435 *Kepler* transits

Raetz et al. 2014, submitted to MNRAS

Transit Timing

Transit Timing

Period [Epoch]

Raetz et al. 2014, submitted to MNRAS

Several tests:

Several tests:

After rescaling the error bars with $\beta = 1.08$

(β -factor see e.g. Winn et al. 2008)

 $\Delta k = (3.1 \pm 1.1) \cdot 10^{-7}$ 1/epoch

3.0σ

Several tests:

After rescaling the error bars with $\beta = 1.08$ (β -factor see e.g. Winn et al. 2008)

 $\Delta k = (3.1 \pm 1.1) \cdot 10^{-7}$ 1/epoch

After 2σ -clipping (from the average of the k-values):2.5\sigma $\Delta k = (2.7 \pm 1.1) \cdot 10^{-7}$ 1/epochRaetz et al. 2014, submitted to MNRAS

3.0σ

increase of k means: an increase of r_b or a decrease of r_A

increase of k means: an increase of r_b or a decrease of r_A

→ Increase of stellar activity?

increase of k means: an increase of r_b or a decrease of r_A

→ Increase of stellar activity?

stellar spots \rightarrow changes of the average temperature, hence the effective stellar radius

positive trend in k

 \rightarrow a decrease in luminosity of 0.28%

 \rightarrow a change of spot coverage of 0.44%.

Comparison with the solar cycle

Foukal et al (2006):

variation amplitude of the solar constant within the last three solar cycles $\sim 0.90~W~m^{-2}$

 \rightarrow If translated to luminosity this yields a variation of 0.066%.

 \rightarrow change in spot covered area of 0.1%

Including the Maunder Minimum:

luminosity variation can be as high as 0.2%

→ change in spot covered area of 0.34%

The Sun is known to be not a very active star (e.g. Radick et al. 1998)

 \rightarrow the TrES-2 host star could have a higher spot covered area

Activity vs. Age of the TrES-2 host star

Sozzetti et al. (2007):

determined chromospheric activity from the Ca II H and K lines:

 $(\log R'_{HK}) = -5.16 \pm 0.15$

- \rightarrow implies a very low activity of the TrES-2 host star
- \rightarrow corresponds to a very high age of ~ 8 Gyr.

unusual high Li abundance as it is expected from a star at the age of 1-2 Gyr.

From comparison with evolutionary models: final age of 5.1+2.7-2.3 Gyr

→ the TrES-2 host star is slightly older than the Sun and should be less active

Knutson et al. (2010):

 $\langle \log R'_{HK} \rangle = -4.949$

Activity vs. Age of the TrES-2 host star

Sozzetti et al. (2007):

determined chromospheric activity from the Ca II H and K lines:

 $(\log R'_{HK}) = -5.16 \pm 0.15$

- \rightarrow implies a very low activity of the TrES-2 host star
- \rightarrow corresponds to a very high age of ~ 8 Gyr.

unusual high Li abundance as it is expected from a star at the age of 1-2 Gyr.

From comparison with evolutionary models: final age of 5.1+2.7-2.3 Gyr

→ the TrES-2 host star is slightly older than the Sun and should be less active

Knutson et al. (2010):

 $(\log R'_{HK}) = -4.949$

→Conclusion

To test the hypothesis of a changing activity it is necessary to spectroscopically and photometrically monitor TrES-2 and its host star for the next years to decades

Thank you for your attention !!!